Pionex Strategy Executor

Back to Portfolio

Pionex Strategy Executor via Webhooks

Role: Lead Developer | Duration: September 2023

The Pionex Strategy Executor is an automated trading system that leverages webhooks to execute trading strategies on the Pionex cryptocurrency exchange. This solution provides seamless execution with real-time portfolio tracking and zero-fee transactions, including strategic profit analysis for informed investment decisions.

Experimental Project Disclaimer: This project was developed purely for experimental and educational purposes. The strategies and implementations demonstrated here are not financial advice. Cryptocurrency trading involves significant risks, and all trading decisions should be made based on your own research and risk tolerance. The project showcases technical implementation capabilities only.

Python FastAPI Webhooks Pionex API TradingView Data Analysis Error Handling Automated Trading

Development Timeline

Research & Planning

Early September 2023

  • API documentation analysis
  • Strategy formulation
  • Risk management planning
  • System architecture design

Core Development

Mid September 2023

  • Webhook endpoint setup
  • API integration implementation
  • Error handling system
  • Testing framework creation

Strategy Implementation

Late September 2023

  • Trading logic development
  • Position management system
  • Risk controls implementation
  • Performance monitoring setup

Testing & Optimization

End of September 2023

  • Live testing with small positions
  • Strategy refinement
  • Performance optimization
  • Documentation completion

System Architecture

System Overview

graph TB subgraph Client Layer TV[TradingView Alerts] WH[Webhook Endpoint] end subgraph Core System Parser[Signal Parser] Strategy[Strategy Executor] Risk[Risk Management] end subgraph Exchange Layer API[Pionex API] Orders[Order Management] Portfolio[Portfolio Tracker] end subgraph Monitoring Logger[Logging System] Monitor[Performance Monitor] Alerts[Alert System] end TV --> WH WH --> Parser Parser --> Strategy Strategy --> Risk Risk --> API API --> Orders Orders --> Portfolio Portfolio --> Monitor Monitor --> Alerts Alerts --> Logger

Trading Signal Flow

sequenceDiagram participant TV as TradingView participant WH as Webhook participant SE as Strategy Executor participant RM as Risk Manager participant EX as Exchange TV->>WH: Send Trading Signal WH->>SE: Parse & Validate Signal SE->>RM: Check Risk Parameters RM->>EX: Execute Trade EX-->>RM: Trade Confirmation RM-->>SE: Update Position SE-->>WH: Log Result

Risk Management Process

graph LR subgraph Risk Checks Position[Position Size] Balance[Account Balance] Exposure[Total Exposure] end subgraph Controls Limits[Trading Limits] Stop[Stop Loss] Take[Take Profit] end subgraph Actions Execute[Execute Trade] Reject[Reject Trade] Adjust[Adjust Size] end Position --> Limits Balance --> Limits Exposure --> Limits Limits --> Execute Limits --> Reject Limits --> Adjust Stop --> Execute Take --> Execute

Implementation Details

Webhook Handler


@app.post("/webhook")
async def webhook_handler(request: Request):
    data = await request.json()
    
    # Validate incoming signal
    if not validate_signal(data):
        logger.error("Invalid signal format")
        return {"status": "error", "message": "Invalid signal format"}
    
    # Process trading signal
    try:
        strategy = StrategyExecutor(data)
        result = await strategy.execute()
        return {"status": "success", "data": result}
    except Exception as e:
        logger.error(f"Strategy execution failed: {str(e)}")
        return {"status": "error", "message": str(e)}
          

Risk Management Implementation


class RiskManager:
    def __init__(self, config):
        self.max_position_size = config.MAX_POSITION_SIZE
        self.max_exposure = config.MAX_EXPOSURE
        self.stop_loss_pct = config.STOP_LOSS_PCT

    async def validate_trade(self, trade_params):
        # Check account balance
        balance = await self.get_account_balance()
        if trade_params.size > self.max_position_size * balance:
            raise RiskLimitExceeded("Position size exceeds maximum allowed")
        
        # Check total exposure
        current_exposure = await self.get_total_exposure()
        if current_exposure + trade_params.size > self.max_exposure:
            raise RiskLimitExceeded("Total exposure limit exceeded")
        
        return True
          

Deployment Architecture

graph TB subgraph Vultr VPS App[FastAPI Application] Nginx[Nginx Reverse Proxy] SSL[Let's Encrypt SSL] end subgraph Security FW[UFW Firewall] Auth[API Authentication] end subgraph Monitoring PM2[PM2 Process Manager] Logs[Log Rotation] end Client[TradingView] --> SSL SSL --> Nginx Nginx --> App FW --> Nginx App --> Auth PM2 --> App App --> Logs

Server Setup

  • Vultr Cloud Compute Instance
  • Ubuntu 20.04 LTS
  • 2 vCPU, 2GB RAM
  • Automated backups

Security Measures

  • SSL/TLS encryption
  • UFW firewall configuration
  • API key authentication
  • Rate limiting

Process Management

  • PM2 process manager
  • Automatic restarts
  • Load balancing
  • Performance monitoring

Deployment Configuration


# Nginx Configuration
server {
    listen 443 ssl;
    server_name trading.example.com;
    
    ssl_certificate /etc/letsencrypt/live/trading.example.com/fullchain.pem;
    ssl_certificate_key /etc/letsencrypt/live/trading.example.com/privkey.pem;
    
    location / {
        proxy_pass http://localhost:8000;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
}

# PM2 Ecosystem Config
{
  "apps": [{
    "name": "trading-bot",
    "script": "main.py",
    "interpreter": "python3",
    "instances": 2,
    "exec_mode": "cluster",
    "watch": true,
    "max_memory_restart": "300M"
  }]
}
          

Key Features

Real-time Execution

  • Instant webhook processing
  • Low-latency order execution
  • Real-time status updates

Portfolio Tracking

  • Live position monitoring
  • Performance analytics
  • Risk management

Risk Management

  • Position size limits
  • Stop-loss automation
  • Exposure controls

Strategy Flexibility

  • Custom strategy support
  • Multiple timeframe analysis
  • Parameter optimization

Performance Metrics

Trade Report Interface

Live Trade Report Dashboard

Execution Speed

< 500ms

Average order execution time

Success Rate

99.9%

Order execution accuracy

Win Rate

68%

Strategy success rate

TradingView Integration

TradingView Alert Setup

Alert Configuration

TradingView alert setup with webhook integration and custom message format.

Strategy Implementation

Strategy Implementation

Custom strategy implementation with technical indicators and signal generation.

Performance Monitoring

Performance Dashboard

Real-time monitoring of strategy performance and trade execution.

Project Resources

Access the project files and documentation for the Pionex Strategy Executor system.

Strategy Executor Package

Complete implementation including webhook handler, strategy executor, and documentation.

Python 31 KB
Download Package